

Published on Web 10/22/2010

Electronic Effects on Atom Tunneling: Conformational Isomerization of Monomeric *Para*-Substituted Benzoic Acid Derivatives

Shadi Amiri, Hans Peter Reisenauer, and Peter R. Schreiner*

Institute for Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany

Received August 20, 2010; E-mail: prs@org.chemie-uni-giessen.de

Abstract: We present the first generation and spectroscopic identification of the higher-lying E conformer of the simplest aromatic carboxylic acid, benzoic acid (1a), as its O-deuterated isotopologue (E)- d_1 -1a using matrix-isolation techniques; the parent (E)-1a could not be observed because of fast H-tunneling to the more stable conformer (Z)-1a. Even deuterated (E)- d_1 -1a converts quickly back to (Z)- d_1 -1a through D-tunneling with a halflife (τ) of ~12 min in Ar at 11 K. Tunneling computations using an Eckart barrier in conjunction with a CCSD(T)/cc-pVTZ//MP2/ cc-pVDZ + ZPVE intrinsic reaction path revealed that τ of (E)-1a is only $\sim 10^{-5}$ min, in marked contrast to those of simple aliphatic acids, which are in the range of minutes. The electronic substituent effects on D-tunneling in para-substituted benzoic acid derivatives (p-X-PhCOOD, d_1 -1) were systematically studied in Ar matrices at 11 K to derive the first Hammett relationships for atom tunneling. σ -Electron donors (X = alkyl) increase the halflife of d_1 -1, while σ -acceptor/ π -donor groups (X = OD, NH₂, halogen) and to an even greater extent a σ -/ π -acceptor group (X = NO₂) decrease τ . The latter finding is in line with the smaller E-to-Z reaction barriers and narrower reaction widths for the isomerization. Tunneling substituent constants (σ^{t}) for this conformational isomerization were derived experimentally and computationally.

Although double hydrogen transfer in benzoic acid (1a) dimers is a fundamental model for studying the molecular dynamics arising from quantum tunneling in complex biological systems,^{1,2} there has been no report regarding the conformational isomerizations through tunneling in *monomeric* 1a; only few simple carboxylic acids have been investigated.^{2–4} The lack of systematic studies of electronic substituent effects on tunneling processes motivated us to study the E/Z isomerizations and the potential H- and D-tunneling in 1 (Scheme 1), especially because the electronic effects in *para*-substituted benzoic acids are one of the pillars upon which our understanding of organic reactivity is built (e.g., through the Hammett equation⁵).

The E/Z conformers of carboxylic acids interconvert through C–O bond rotations (Scheme 1), with the Z conformer generally being preferred over a very large temperature range; very few structures, such as glyoxylic acid^{6a} and pyruvic^{6b} acid, prefer the *E* conformation. While (*E*)-HCOOH [(*E*)-**2**] was first characterized

utilizing microwave spectroscopy in the 1970s,^{7a} the first IR signatures for (*E*)-HCOOH^{7b} and (*E*)-CH₃COOH⁸ [(*E*)-**3**] trapped in solid matrices were published only in 1997 and 2003, respectively. In contrast to some of the simple aliphatic acids, the *E* isomers of the aromatic acids have not been studied, although several microwave and IR studies of monomeric (*Z*)-benzoic acid [(*Z*)-**1a**] are available.⁹ Noticeably, both trapped (*E*)-**2**^{4,10} and (*E*)-**3**^{11,12} interconvert to their more stable *Z* isomers through H-tunneling. The lifetime of (*E*)-**2** in solid Ar at 8 K is on the order of minutes; under the same conditions, (*E*)-**3** decays ~10 times faster.^{8,12}

The characteristic IR bands for (*Z*)-**1a**, especially the single O–H stretching vibration (3570.5 cm⁻¹, Ar, 11 K) confirmed the presence of only one conformer. We attempted to prepare and identify the higher-lying (*E*)-**1a** either photochemically by irradiation of (*Z*)-**1a** at $\lambda = 254$ nm (**1a** has absorption maxima at $\lambda = 200$, 230, and 280 nm¹³) for 30 min in matrices at 11 K or thermally by flowing (*Z*)-**1a** through an 800 °C quartz glass tube followed by trapping in various matrices at 11 K. Although our CCSD(T)/cc-pVTZ// MP2/cc-pVDZ computations gave an isomerization barrier of 5.0 kcal mol⁻¹ (structures optimized using density functional theory at various levels gave similar energy differences; see the Supporting Information), which cannot be overcome thermally at 11 K, we were unable to detect (*E*)-**1a**. The same applies to the *para*-substituted derivatives **1b**–**f**, in stark contrast to the previously observed matrix-isolated (*E*)-**2** and (*E*)-**3**.

To examine whether the isomerization through H-tunneling from (*E*)-**1a** to (*Z*)-**1a** is simply too fast on the time scale of our experiments (minutes) or we had not generated the (*E*)-**1a** isomer, we examined d_1 -**1a** (OD deuteration) in the same way. Indeed, we were able to record the IR spectrum of (*E*)- d_1 -**1a** in Ar at 11 K (Figure 1); its fundamental frequencies v_{O-D} , $v_{C=O}$, and $\delta_{C-H,in-plane}$ were blue-shifted and the v_{C-O} and $\delta_{C-H,out-of-plane}$ absorptions red-shifted relative to those of (*Z*)- d_1 -**1a**.

Figure 1. Difference IR spectra of (E)- d_1 -**1a** (upward-pointing peaks) and (Z)- d_1 -**1a** (downward-pointing peaks): (a) computed at the MP2/cc-pVDZ level (unscaled); (b) measured in solid Ar at 11 K after 30 min of irradiation at 254 nm. The splitting of the ν_{C-O} band of (Z)- d_1 -**1a** is due to matrix effects.

Surprisingly, $(E)-d_1-1a$ did not persist under these conditions: it converted into $(Z)-d_1-1a$ with a half-life (τ) of 12 min in Ar (Table 1). The relative temperature independence of the half-lives at 11 and 20 K and the apparently very large primary H/D kinetic isotope effect support the notion of a tunneling mechanism. The D-tunneling of the $(E)-d_1-1a$ isomer is three orders of magnitude faster than that of $(E)-d_1-2$, with a half-life of ~ 7 days⁴ in Ar at 4.3 K. Clearly, the phenyl ring has a decisive electronic effect on the tunneling rate, prompting us to study a selection of *p*ara-substituted, monodeuterated benzoic acids (d_1-1b-f) .

The matrix material influences the tunneling rates significantly (Table 1), a trend also seen in other tunneling processes.^{4,14} The rate retardation in N₂ matrices is likely due to formation of a hydrogen-bond complex between the acid function and N₂. Still, the stabilization of the (*E*)-**1a** rotamer in N₂ was not sufficient to allow its spectroscopic observation.

Table 1. Half-Lives τ (min)^a of (*E*)- d_1 -**1a** in Various Matrices

<i>T</i> (K)	Ar	Xe	N ₂
11 20	$\begin{array}{c} 12\pm2\\ 12\pm2 \end{array}$	$\begin{array}{c} 22\pm3\\ 25\pm3 \end{array}$	11 ± 1 daysb

^{*a*} From first-order kinetics measurements based on the slope $[k (s^{-1})]$ of a plot of ln(C=O peak height) vs time. ^{*b*} Not determined because of decomposition of the N₂ matrix at this temperature.

The tunneling process was also analyzed through computation of the intrinsic reaction path (IRP) connecting the rotational transition structure (TS-1a) with (E)-1a and (Z)-1a. A final potential energy curve along the isomerization IRP was then constructed from CCSD(T)/cc-pVTZ energy points and MP2/cc-pVDZ zero-point vibrational energies (ZPVEs). Tunneling probabilities were evaluated using an unscaled asymmetric Eckart potential¹⁵ to the imaginary TS-1a barrier frequency $\omega^* = 536i \text{ cm}^{-1}$ (394*i* cm⁻¹ for TS- d_1 -1a) as well as the ZPVE-corrected reaction energy of -6.0 kcal mol⁻¹ (-6.0 kcal mol⁻¹ for d_1 -1a) and barrier height of +5.0 (+5.3 kcal mol⁻¹ for d_1 -1a). This procedure has been shown to yield tunneling half-lives in good qualitative agreement with experiment for the isotopologues of hydroxycarbene¹⁴ and phenylhydroxycarbene.¹⁶ A vibrational "reaction" mode of (E)-1a toward TS-1a with a frequency of $\omega_0 = 498 \text{ cm}^{-1}$ [358 cm⁻¹ for (E)- d_1 -1a] was identified. In good qualitative agreement with the experiment, the computations gave a half-life of 2.8 h (55 min at the MP2/cc-pVDZ level) for (*E*)- d_1 -**1a**, while they predicted $\tau \sim$ 10^{-5} min for the H-tunneling in (E)-1a, which is much too fast to be measured using our present experimental setup. The noted much faster D-tunneling in d_1 -1a relative to d_1 -2⁴ can be rationalized by the lower reaction barrier [by 2.4 kcal mol⁻¹ at the CCSD(T)/ccpVTZ//MP2/cc-pVDZ level] and especially the much smaller barrier width (Figure 2).

The experimental and computed half-lives for *para*-substituted benzoic acids (Table 2) revealed the preliminary trend that pure σ -electron-donating groups (CH₃, *t*-Bu) increase the tunneling half-life of (*E*)-*d*₁-**1**, while σ -acceptor/ π -donor groups (OD, NH₂, halogen) and to an even greater extent a σ -/ π -electron-acceptor group (NO₂) decrease the D-tunneling half-life; the *d*₁-**1f** analogue had the lowest and narrowest IRP curve among those for *d*₁-**1** (Figure 2). However, a Hammett plot showed that the substituent constant σ does not correlate well with τ because the tunneling isomerization in **1** apparently is electronically too different from that for simple *para*-substituted benzoic acid ionization (Figure S27). Hence, we specifically derived the tunneling substituent constants σ^{t} (Table 2) using the relation $\rho\sigma^{t} = pk_{\rm H} - pk_{\rm X} = \log(k_{\rm X}/k_{\rm H})$,⁵ with the reaction constant ρ set equal to 1; the excellent fit is

Figure 2. E/Z isomerization IRPs for **1a**, d_1 -**1a**-**f**, **2**, and d_1 -**2** computed at the MP2/cc-pVDZ level.

Table 2. Experimental (Ar, 11 K) and Computed (MP2/cc-pVDZ, 11 K; in parentheses) Half-Lives τ of (*E*)-*d*₁-**1a**-**f** and Derived σ ^t Values for the Tunneling *E*/*Z* Isomerizations

	Х	au (min)	σ^{t}
(<i>E</i>)- <i>d</i> ₁ - 1b	CH ₃	25 ± 2 (188)	-0.38 (-0.53)
$(E)-d_1-1c$	t-Bu	$16 \pm 2 (140)$	-0.17(-0.40)
(E)-d ₁ -1a	H	$12 \pm 2 (55)$	0.00 (0.00)
$(E)-d_1-1d$	OD	$6 \pm 2 (28^{a})$	+0.26(+0.30)
$(E)-d_1-1e$	Cl	3 ± 1 (8)	+0.60(+0.85)
(E) - d_1 - 1f	NO_2	3 ± 1 (3)	+0.53 (+1.26)

^{*a*} The two C–OD*para* conformers showed slightly different half-lives (for details, see the Supporting Information).

depicted in Figure S28 in the Supporting Information. Importantly, the signs of σ and σ^{t} were the same, even when the absolute values were quite different. Figure 3 underlines these qualitative findings by correlating the computed barrier widths with the experimental half-lives.

Figure 3. Plot of the barrier widths derived from IRP computations at the MP2/cc-pVDZ vs the experimental half-live of (E)- d_1 -1.

A natural extension of our studies is the examination of conformational tunneling in biologically relevant systems such as amino acids and fatty acids. Comprehensive computational and experimental studies on a generalization of the electronic substituent effects on tunneling processes are in progress.

Acknowledgment. S.A. thanks the DAAD and the Gottlieb Daimler and Karl Benz Foundation for scholarships. This work was supported by the Deutsche Forschungsgemeinschaft.

Supporting Information Available: Detailed experimental and computational data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) (a) Horsewill, A. J. J. Phys. Org. Chem. 2010, 23, 580–585. (b) Horsewill, A. J.; McGloin, C. J.; Trommsdorff, H. P.; Johnson, M. R. Chem. Phys. 2003, 291, 41–52. (c) Rambaud, C.; Oppenländer, A.; Pierre, M.; Trommsdorff, H. P.; Vial, J.-C. Chem. Phys. 1989, 136, 335–347. (d) Watt, C. I. F. J. Phys. Org. Chem. 2010, 23, 561–571.
- (2) Fillaux, F.; Romain, F.; Limage, M.-H.; Leygue, N. Phys. Chem. Chem. Phys. 2006, 8, 4327–4336.
- (3) (a) Trakhtenberg, L. I.; Fokeyev, A. A.; Zyubin, A. S.; Mebel, A. M.; Lin,
 S. H. J. Chem. Phys. 2009, 130, 144502/1–11. (b) Schomaker, V.;
 Ogorman, J. M. J. Am. Chem. Soc. 1947, 69, 2638–2644. (c) Karle, I. L.;
 Brockway, L. O. J. Am. Chem. Soc. 1944, 66, 1974–1979.
- (4) Domanskaya, A.; Marushkevich, K.; Khriachtchev, L.; Räsänen, M. J. Chem. Phys. 2009, 130, 154509/1-5.
- (5) (a) Hammett, L. P. J. Am. Chem. Soc. 1937, 59, 96–103. (b) Jones, R. A. Y. Physical and Mechanistic Organic Chemistry: Cambridge University Press: Cambridge, U.K., 1979. (c) Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry: University Science Books: Sausalito, CA, 2006.
- Organic Chemistry; University Science Books: Sausalito, CA, 2006.
 (6) (a) van Eijck, B. P.; van Duineveldt, F. B. J. Mol. Struct. 1977, 39, 157–163. (b) Dyllick-Brenzinger, C. E.; Bauder, A.; Günthard, H. H. Chem. Phys. 1977, 23, 195–206.
- (7) (a) Hocking, W. M. Z. Naturforsch. A 1976, 31, 1113–1121; Bjarnov, E.; Hocking, W. M. Z. Naturforsch. A 1978, 33, 610–618. (b) Pettersson, M.; Lundell, J.; Khriachtchev, L.; Räsänen, M. J. Am. Chem. Soc. 1997, 119, 11715–11716.

- (8) Macoas, E. M. S.; Khriachtchev, L.; Pettersson, M.; Fausto, R.; Räsänen, M. J. Am. Chem. Soc. 2003, 125, 16188–16189.
- (9) (a) Onda, M.; Asai, M.; Takise, K.; Kuwae, K.; Hayami, K.; Kuroe, A.; Mori, M.; Miyazaki, H.; Suzuki, N.; Yamaguchi, I. J. Mol. Struct. 1999, 482, 301–303. (b) Reva, I. D.; Stepanian, S. G. J. Mol. Struct. 1995, 349, 337–340.
- (10) (a) Pettersson, M.; Macoas, E. M. S.; Khriachtchev, L.; Fausto, R.; Räsänen, M. J. Am. Chem. Soc. 2003, 125, 4058–4059. (b) Pettersson, M.; Macoas, E. M. S.; Khriachtchev, L.; Lundell, J.; Fausto, R.; Räsänen, M. J. Chem. Phys. 2002, 117, 9095–9098.
- (11) (a) Macoas, E. M. S.; Khriachtchev, L.; Pettersson, M.; Fausto, R.; Räsänen, M. J. Chem. Phys. 2004, 121, 1331–1338. (b) Meyer, R.; Ha, T. K.; Frei, H.; Gunthard, H. H. Chem. Phys. 1975, 9, 393–402. (c) Redington, R. L.; Lin, K. C. J. Chem. Phys. 1971, 54, 4111–4119. (d) Berney, C. V.; Redington, R. L.; Lin, K. C. J. Chem. Phys. 1970, 53, 1713–1721.
- (12) Macoas, E. M. S.; Khriachtchev, L.; Fausto, R.; Räsänen, M. J. Phys. Chem. A 2004, 108, 3380–3389.
- (13) Hosoya, H.; Tanaka, J.; Nagakura, S. J. Mol. Spectrosc. 1962, 8, 257–275.
- (14) Schreiner, P. R.; Reisenauer, H. P.; Pickard, F. C.; Simmonett, A. C.; Allen,
- W. D.; Matyus, E.; Csaszar, A. G. *Nature* **2008**, *453*, 906–909.
- (15) Eckart, C. Phys. Rev. 1930, 35, 1303-1309.
- (16) Gerbig, D.; Reisenauer, H. P.; Wu, C. H.; Ley, D.; Allen, W. D.; Schreiner, P. R. J. Am. Chem. Soc. **2010**, 132, 7273–7275.

JA107531Y